Pemanfaatan Konsep TBA

Posted: Mei 24, 2011 in IT, KBM, TBA


MATERI KULIAH :

Topik Substansi
1 Kontrakpembelajaran, Pendahuluan a. Ketentuan dalam Kuliah
b. Pengertian Bahasa
c. Pengertian Otomata
2 Pengertian Dasar dan Operasi pada string
a. Pngertian Dasar Simbol dll
b. Operasi dasar string
3 Grammar dan Bahasa
a. Definisi Grammar
b. Klasifikasi Grammar/bahasa
c. Penentuan bahasa dari suatu grammar
d. Penentuan grammar dari suatu bahasa

4,5 Mesin Pengenal Bahasa
(OTOMATA) a. Macam-macam mesin pengenal bahasa
b. Finite State Automata
c. Ekuivalensi NFA-DFA
6 Ekspresi Reguler.
a. Pengertian ER
b. Menentukan ER dari suatu bahasa reguler
c. Membuat NFA dari ER
7 Ujian sisipan
8,9 Bahasa Bebas Konteks a. Penyederhanaan tata bahasa bebas konteks
b. Bentuk Normal Chomsky
10,11 PushDown Automata (PDA)
a. Pengertian PDA
b. PDA deterministik/non deterministik.
12 Mesin Turing a. Pengertian Mesin Turing
b. Penerimaan pada MT
13-15 Topik Khusus
Topik-topik khusus/ masalah2 yang lebih kompleks dari teori bahasa dan otomata.
16 Ujian Akhir

Buku :

• Teori Bahasa dan Otomata, John E. Hopcroft dkk. (terjemahan, Edisi 2, 2007)
• Teori Bahasa dan Otomata, Firrar Utdirartatmo
• Introduction to Languages and The Theory of Computation, John C. Martin
• An Introduction to Formal Language and Automata, Peter Linz

Teori Bahasa
• Teori bahasa membicarakan bahasa formal (formal language), terutama untuk kepentingan perancangan kompilator (compiler) dan pemroses naskah (text processor).
• Bahasa formal adalah kumpulan kalimat. Semua kalimat dalam sebuah bahasa dibangkitkan oleh sebuah tata bahasa (grammar) yang sama.
• Sebuah bahasa formal bisa dibangkitkan oleh dua atau lebih tata bahasa berbeda.
• Dikatakan bahasa formal karena grammar diciptakan mendahului pembangkitan setiap kalimatnya.
• Bahasa Natural/manusia bersifat sebaliknya; grammar diciptakan untuk meresmikan kata-kata yang hidup di masyarakat. Dalam pembicaraan selanjutnya ‘bahasa formal’ akan disebut ‘bahasa’ saja.

Otomata (Automata)
• Otomata adalah mesin abstrak yang dapat mengenali (recognize), menerima (accept), atau membangkitkan (generate) sebuah kalimat dalam bahasa tertentu.

Beberapa Pengertian Dasar :

• Simbol adalah sebuah entitas abstrak (seperti halnya pengertian titik dalam geometri). Sebuah huruf atau sebuah angka adalah contoh simbol.
• String adalah deretan terbatas (finite) simbol-simbol. Sebagai contoh, jika a, b, dan c adalah tiga buah simbol maka abcb adalah sebuah string yang dibangun dari ketiga simbol tersebut.
• Jika w adalah sebuah string maka panjang string dinyatakan sebagai w dan didefinisikan sebagai cacahan (banyaknya) simbol yang menyusun string tersebut. Sebagai contoh, jika w = abcb maka w= 4.
• String hampa adalah sebuah string dengan nol buah simbol. String hampa dinyatakan dengan simbol  (atau ^) sehingga = 0. String hampa dapat dipandang sebagai simbol hampa karena keduanya tersusun dari nol buah simbol.
• Alfabet adalah hinpunan hingga (finite set) simbol-simbol
Operasi Dasar String
Diberikan dua string : x = abc, dan y = 123
• Prefik string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling belakang dari string w tersebut.
Contoh : abc, ab, a, dan  adalah semua Prefix(x)
• ProperPrefix string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling belakang dari string w tersebut.
Contoh : ab, a, dan  adalah semua ProperPrefix(x)
• Postfix (atau Sufix) string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling depan dari string w tersebut.
Contoh : abc, bc, c, dan  adalah semua Postfix(x)
• ProperPostfix (atau PoperSufix) string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling depan dari string w tersebut.
Contoh : bc, c, dan  adalah semua ProperPostfix(x)
• Head string w adalah simbol paling depan dari string w.
Contoh : a adalah Head(x)

• Tail string w adalah string yang dihasilkan dari string w dengan menghilangkan simbol paling depan dari string w tersebut.
Contoh : bc adalah Tail(x)
• Substring string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol paling depan dan/atau simbol-simbol paling belakang dari string w tersebut.
Contoh : abc, ab, bc, a, b, c, dan  adalah semua Substring(x)
• ProperSubstring string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol paling depan dan/atau simbol-simbol paling belakang dari string w tersebut.
Contoh : ab, bc, a, b, c, dan  adalah semua Substring(x)
• Subsequence string w adalah string yang dihasilkan dari string w dengan menghilangkan nol atau lebih simbol-simbol dari string w tersebut.
Contoh : abc, ab, bc, ac, a, b, c, dan  adalah semua Subsequence(x)
• ProperSubsequence string w adalah string yang dihasilkan dari string w dengan menghilangkan satu atau lebih simbol-simbol dari string w tersebut.
Contoh : ab, bc, ac, a, b, c, dan  adalah semua Subsequence(x)
• Concatenation adalah penyambungan dua buah string. Operator concatenation adalah concate atau tanpa lambang apapun.
Contoh : concate(xy) = xy = abc123
• Alternation adalah pilihan satu di antara dua buah string. Operator alternation adalah alternate atau .
Contoh : alternate(xy) = xy = abc atau 123
• Kleene Closure : x* = xxxxxx… = xx x …
• Positive Closure : x = xxxxxx… = xx x …
Beberapa Sifat Operasi
• Tidak selalu berlaku : x = Prefix(x)Postfix(x)
• Selalu berlaku : x = Head(x)Tail(x)
• Tidak selalu berlaku : Prefix(x) = Postfix(x) atau Prefix(x)  Postfix(x)
• Selalu berlaku : ProperPrefix(x)  ProperPostfix(x)
• Selalu berlaku : Head(x)  Tail(x)
• Setiap Prefix(x), ProperPrefix(x), Postfix(x), ProperPostfix(x), Head(x), dan Tail(x) adalah Substring(x), tetapi tidak sebaliknya
• Setiap Substring(x) adalah Subsequence(x), tetapi tidak sebaliknya
• Dua sifat aljabar concatenation :
• Operasi concatenation bersifat asosiatif : x(yz) = (xy)z
• Elemen identitas operasi concatenation adalah  : x = x = x
• Tiga sifat aljabar alternation :
• Operasi alternation bersifat komutatif : xy = yx
• Operasi alternation bersifat asosiatif : x(yz) = (xy)z
• Elemen identitas operasi alternation adalah dirinya sendiri : xx = x
• Sifat distributif concatenation terhadap alternation : x (yz) = xyxz
• Beberapa kesamaan :
• Kesamaan ke-1 : (x*)* = x*
• Kesamaan ke-2 : x = x  = x*
• Kesamaan ke-3 : (xy)* = xyxxyyxyyx… = semua string yang merupakan concatenation dari nol atau lebih x, y, atau keduanya.

GRAMMAR DAN BAHASA

Konsep Dasar

• Anggota alfabet dinamakan simbol terminal.

• Kalimat adalah deretan hingga simbol-simbol terminal.

• Bahasa adalah himpunan kalimat-kalimat. Anggota bahasa bisa tak hingga kalimat.

• Simbol-simbol berikut adalah simbol terminal :
 huruf kecil, misalnya : a, b, c, 0, 1, ..
 simbol operator, misalnya : +, , dan 
 simbol tanda baca, misalnya : (, ), dan ;
 string yang tercetak tebal, misalnya : if, then, dan else.

• Simbol-simbol berikut adalah simbol non terminal /Variabel :
 huruf besar, misalnya : A, B, C
 huruf S sebagai simbol awal
 string yang tercetak miring, misalnya : expr

• Huruf yunani melambangkan string yang tersusun atas simbol-simbol terminal atau simbol-simbol non terminal atau campuran keduanya, misalnya : , , dan .

• Sebuah produksi dilambangkan sebagai   , artinya : dalam sebuah derivasi dapat dilakukan penggantian simbol  dengan simbol .

• Derivasi adalah proses pembentukan sebuah kalimat atau sentensial. Sebuah derivasi dilambangkan sebagai :   .

• Sentensial adalah string yang tersusun atas simbol-simbol terminal atau simbol-simbol non terminal atau campuran keduanya.

• Kalimat adalah string yang tersusun atas simbol-simbol terminal. Kalimat adalah merupakan sentensial, sebaliknya belum tentu..
Grammar :

Grammar G didefinisikan sebagai pasangan 4 tuple : V , V , S, dan P, dan dituliskan sebagai G(V , V , S, P), dimana :

V : himpunan simbol-simbol terminal (alfabet) kamus
V : himpunan simbol-simbol non terminal
SV : simbol awal (atau simbol start)
P : himpunan produksi

Contoh :

1. G1 : VT = {I, Love, Miss, You}, V = {S,A,B,C},
P = {S  ABC, A I, B Love | Miss, C You}

S  ABC
 IloveYou

L(G1)={IloveYou, IMissYou}

2. . G2 : VT = {a}, V = {S}, P = {S  aSa}

S  aS
 aaS
 aaa L(G2) ={an  n ≥ 1}

L(G2)={a, aa, aaa, aaaa,…}

Klasifikasi Chomsky

Berdasarkan komposisi bentuk ruas kiri dan ruas kanan produksinya (  ), Noam Chomsky mengklasifikasikan 4 tipe grammar :

1. Grammar tipe ke-0 : Unrestricted Grammar (UG)
Ciri : ,   (V V )*, > 0
2. Grammar tipe ke-1 : Context Sensitive Grammar (CSG)
Ciri : ,   (V V ) *, 0 y atau x m  1}, L = {a b 1  n < m}.
P (L ) = {A  aAaC, C  aCbab}, Q(L ) = {B  BbDb, D aDbab}
P (L ) = {S AB, A  aAaC, C  aCbab, B  BbDb, D aDbab}

5. Tentukan sebuah gramar bebas konteks untuk bahasa :
L = bilangan bulat non negatif genap. Jika bilangan tersebut terdiri dari dua digit atau lebih maka nol tidak boleh muncul sebagai digit pertama.

Jawab :

Langkah kunci : Digit terakhir bilangan harus genap. Digit pertama tidak boleh nol. Buat tiga himpunan terpisah : bilangan genap tanpa nol (G), bilangan genap dengan nol (N), serta bilangan ganjil (J).
P (L ) = {S  NGAJA, A  NNAJA, G 2468,
N 02468, J  13579}

C. Mesin Pengenal Bahasa

Untuk setiap kelas bahasa Chomsky, terdapat sebuah mesin pengenal bahasa. Masing-masing mesin tersebut adalah :

Kelas Bahasa Mesin Pengenal Bahasa
Unrestricted Grammar (UG) Mesin Turing (Turing Machine), TM
Context Sensitive Grammar (CSG) Linear Bounded Automata, LBA
Context Free Gammar (CFG) Pushdown Automata, PDA
Regular Grammar, RG Finite State Automata, FSA

FINITE STATE AUTOMATA (FSA)

• FSA didefinisikan sebagai pasangan 5 tupel : (Q, ∑, δ, S, F).

Q : himpunan hingga state
∑ : himpunan hingga simbol input (alfabet)
δ : fungsi transisi, menggambarkan transisi state FSA akibat pembacaan simbol input.
Fungsi transisi ini biasanya diberikan dalam bentuk tabel.
S  Q : state AWAL
F  Q : himpunan state AKHIR

Contoh : FSA untuk mengecek parity ganjil
Q ={Gnp, Gjl} diagram transisi
∑ = {0,1}

tabel transisi
δ 0 1
Gnp Gnp Gjl
Gjl Gjl Gnp

S = Gnp, F = {Gjl}

• Ada dua jenis FSA :

• Deterministic finite automata (DFA)
• Non deterministik finite automata.(NFA)

– DFA : transisi state FSA akibat pembacaan sebuah simbol bersifat tertentu.
δ : Q  ∑ Q
– NFA : transisi state FSA akibat pembacaan sebuah simbol bersifat tak tentu.
δ : Q  ∑  2Q

DFA :

Q = {q0, q1, q2}
δ diberikan dalam tabel berikut :

∑= {a, b} δ a b
S = q0 q0 q0 q1
F = {q0, q1} q1 q0 q2
q2 q2 q2

a b a

q0 q1 q2 b

a b

Kalimat yang diterima oleh DFA : a, b, aa, ab, ba, aba, bab, abab, baba
Kalimat yang dittolak oleh DFA : bb, abb, abba

DFA ini menerima semua kalimat yang tersusun dari simbol a dan b yang tidak mengandung substring bb.

Contoh :

Telusurilah, apakah kalimat-kalimat berikut diterima DFA di atas :

abababaa  diterima
aaaabab  diterima
aaabbaba  ditolak

Jawab :

i) δ (q0,abababaa)  δ (q0,bababaa)  δ (q1,ababaa) 
δ (q0,babaa)  δ (q1,abaa)  δ (q0,baa)  δ (q1,aa) 
δ (q0,a)  q0
Tracing berakhir di q0 (state AKHIR)  kalimat abababaa diterima

ii) δ (q0, aaaabab) δ (q0,aaabab) δ (q0,aabab) 
δ (q0,abab)  δ (q0,bab)  δ (q1,ab)  δ (q0,b)  q1
Tracing berakhir di q1 (state AKHIR)  kalimat aaaababa diterima

iii) δ (q0, aaabbaba)  δ (q0, aabbaba)  δ (q0, abbaba) 
δ (q0, bbaba)  δ (q1,baba)  δ (q2,aba)  δ (q2,ba)  δ (q2,a) q2
Tracing berakhir di q2 (bukan state AKHIR)  kalimat aaabbaba ditolak

Kesimpulan :

sebuah kalimat diterima oleh DFA di atas jika tracingnya berakhir di salah satu state AKHIR.

NFA :

Berikut ini sebuah contoh NFA (Q, ∑, δ, S, F). dimana :
Q = {q , q , q ,q , q } δ diberikan dalam tabel berikut :
∑= {a, b,c} δ a b c
S = q
q
{q , q }
{q , q }
{q , q }

F = {q }
q
{q , q }
{q }
{q }

q
{q }
{q , q }
{q }

q
{q }
{q }
{q , q }

q
  

Ilustrasi graf untuk NFA adalah sebagai berikut :

a, b, c a, b, c

a
q q

c b a

b
q q q

a, b, c a, b, c

c

kalimat yang diterima NFA di atas : aa, bb, cc, aaa, abb, bcc, cbb
kalimat yang tidak diterima NFA di atas : a, b, c, ab, ba, ac, bc

Sebuah kalimat di terima NFA jika :

• salah satu tracing-nya berakhir di state AKHIR, atau
• himpunan state setelah membaca string tersebut mengandung state AKHIR

Contoh :

Telusurilah, apakah kalimat-kalimat berikut diterima NFA di atas :
ab, abc, aabc, aabb

Jawab :

1. δ(q ,ab)  δ(q ,b)  δ(q ,b)  {q , q }  {q } = {q , q , q }
Himpunan state TIDAK mengandung state AKHIR  kalimat ab tidak diterima

2. δ(q ,abc)  δ(q ,bc)  δ(q ,bc)  { δ(q ,c)  δ(q ,c)}δ(q , c)
{{ q , q }{ q }}{ q } = {q , q , q ,q }
Himpunan state TIDAK mengandung state AKHIR  kalimat abc tidak diterima

3. δ(q ,aabc)  δ(q ,abc)  δ(q ,abc){ δ(q ,bc)  δ(q ,bc)} 
δ (q ,bc) {{ δ(q , c)  δ(q ,c)}  δ(q , c)}  δ(q , c) 
{{{ q , q } { q }}  {q }}  {q } = {q , q , q ,q }
Himpunan state TIDAK mengandung state AKHIR  kalimat aabc tidak diterima

4. δ(q ,aabb)  δ(q ,abb)  δ(q ,abb)
 { δ(q ,bb)  δ(q ,bb)}  δ (q ,bb)
{{ δ(q , b)  δ(q ,b)}  δ(q , b)}  δ(q , b)
{{{ q , q } { q , q }}  {q }}  {q } = {q , q , q , q }
Himpunan state mengandung state AKHIR  kalimat aabb diterima
SUMBER : http://jasoet.googlecode.com

Komentar
  1. dedesobari mengatakan:

    Tu gmn cara baca nya ya mas???

  2. my ecommerce mengatakan:

    ora mudeng blas saya😦

  3. Roi Riweuh mengatakan:

    kl jara kerja,ny gmn ya mas…!

  4. pain relief mengatakan:

    Magnificent website. Lots of helpful information here.
    I’m sending it to several pals ans additionally
    sharing in delicious. And of course, thanks on your effort!

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s